Example: Football (soccer) playersDataNetwork example describes the 32 soccer teams which participated in the World Championship in Korea / Japan, 2002. Players of the national team often have contracts in other countries. This constitutes a players market where national teams export players to other countries. Members of the 32 teams had contracts in altogether 44 countries. Counting which team exports how many players to which country can be described with a valued, asymmetric graph. The graph is highly a symmetric: some countries only export players, some countries are only importers (data collected by Lothar Krempel).SVG layout - export Network AnalysisHubs and authoritiesIn directed networks we can usually identify two types of important vertices: hubs and authorities. A vertex is a good hub, if it points to many good authorities, and it is a good authority, if it is pointed to by many good hubs. Hubs and authorities are related to eigenvector centrality.See: KLEINBERG, Jon M.: Authoritative Sources in a Hyperlinked Environment. Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms, edited by Howard Karloff (SIAM/ACM-SIGACT, 1998). --------------------------------------------------------------- Valued Valued Input Output Input Output Degree Degree Hubs Auth. Degree Degree --------------------------------------------------------------- ARG 1 7 0.177 0.003 3 20 AUT 2 0 0.000 0.006 3 0 BEL 5 3 0.078 0.032 10 7 BGR 1 0 0.000 0.004 1 0 BRA 2 5 0.089 0.007 2 11 CAM 0 8 0.271 0.000 0 23 CHE 2 0 0.000 0.018 4 0 CHI 1 0 0.000 0.001 1 0 CHN 1 2 0.035 0.005 1 2 CRI 0 4 0.040 0.000 0 4 CZE 1 0 0.000 0.002 1 0 DEU 18 2 0.070 0.184 39 3 DNK 2 8 0.230 0.037 5 20 ECU 1 1 0.057 0.001 1 2 ENG 21 1 0.006 0.840 78 1 ESP 13 1 0.009 0.178 35 1 FRA 15 4 0.312 0.355 51 18 GRC 6 0 0.000 0.053 9 0 HRV 0 5 0.177 0.000 0 18 IRL 0 1 0.636 0.000 0 22 ISR 2 0 0.000 0.007 2 0 ITA 20 1 0.006 0.286 55 1 JPN 2 3 0.071 0.004 6 4 KOR 0 3 0.011 0.000 0 7 MAR 1 0 0.000 0.008 1 0 MEX 3 2 0.030 0.011 5 4 NIG 0 12 0.151 0.000 0 21 NLD 9 0 0.000 0.098 17 0 NOR 1 0 0.000 0.007 1 0 POL 0 8 0.110 0.000 0 15 PRT 4 4 0.121 0.012 5 9 PRY 0 9 0.036 0.000 0 13 RUS 2 6 0.050 0.024 5 9 SCO 3 0 0.000 0.038 5 0 SDA 2 0 0.000 0.014 2 0 SEN 0 2 0.257 0.000 0 22 SLO 0 10 0.070 0.000 0 18 SWE 1 8 0.238 0.007 1 20 TUN 0 5 0.066 0.000 0 9 TUR 4 4 0.144 0.033 6 10 URU 0 4 0.142 0.000 0 15 USA 0 4 0.182 0.000 0 11 YUG 1 0 0.000 0.002 1 0 ZAF 0 10 0.122 0.000 0 16 ---------------------------------------------------------------
Islands - line weightsIslands - line weights |